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A lifting-line theory is developed for wings of large aspect ratio oscillating in an 
inviscid fluid. The theory is unified in the sense that the wing may be curved or 
inclined to the flow, and the asymptotic expansion is uniformly valid with respect to 
the frequency. The method is based on the integral equation formulation of the 
problem: The technique, pioneered by Kida & Miyai (1978), consists of asympto- 
tically solving the Fredholm equation of the first kind which links the unknown 
pressure jump and the normal velocity imposed on the wing. Use of the finite-part 
integral theory introduced by Hadamard (1932) and of a technique developed in 
Guermond (1987, 1988, 1990) yields an asymptotic expansion of the surface integral 
in terms of the inverse of the aspect ratio. At each approximation order, the problem 
reduces to a classical two-dimensional integral equation, whose unknown is the 
pressure jump, and whose right-hand side depends only on the previous ap- 
proximation orders of the solution. The first finite-span correction is explicitly 
calculated. An extensive numerical study is carried out, and comparisons with 
published results are made. 

1. Introduction 
As computer capacities are progressing at  a spectacular pace, the range of 

application of computational fluid dynamics is becoming broader. Complex flows of 
real fluids can now be quite accurately simulated at reasonable numerical costs. 
Nonetheless, numerical simulations of flows do not give clear qualitative insight into 
the physical mechanisms which take place. This perspective, highly desirable for 
designers, may be attained by asymptotic modelling. 

The lifting-line model, originally proposed by Prandtl (1921) and mathematically 
justified by Van Dyke (1964), is one of the most popular asymptotic models in 
aerodynamics. It is based on two hypotheses. The first one consists of assuming that 
the ratio of the span lengthscale, B, of a lifting wing to its chord lengthscale, C, is 
much greater than one (1 6 B/C) .  This ratio, called the aspect ratio, is denoted by 
A.  The second hypothesis is that the variation of the flow along the span occurs on 
the long lengthscale B. 

The lifting-line model is widely taught and used to illustrate the major feature of 
the flow field produced by a finite lifting wing at subsonic speeds. With the help of 
their simplified model, Prandtl and Van Dyke taught scores of students that the 
higher the aspect ratio of the wing the higher its efficiency. They showed that the 
ratio of the induced drag to the total lift is proportional to 1/A. Whereas Prandtl’s 
method involved solving an integral equation, Van Dyke recognized that the 
problem could be considered as a singular perturbation, and he consequently 
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introduced the matched asymptotic expansion technique (MAE) into the solution of 
the problem. The success of his approach prompted many other researchers to  use i t  
for devising extensions of the original model which was restricted to  unswept wings 
operating in steady flow. 

The restrictions on the wing geometry were removed by Cheng (1978) and Cheng 
& Murillo (1984) using the MAE approach. The mechanism that is responsible for 
shifting the loading from the wing centre to the wing tips when the wing is curved 
or swept backward was clearly illuminated by the lifting-line theory. It was shown 
that the backward inclination of the upstream edge of the trailing vortices produces 
logarithmically singular upwash in the vicinity of the wing tips, whereas the 
curvature of the bound vortices generates strong downwash in the vicinity of the 
wing root. The phenomenon is reversed when the wing is curved or swept forward. 
As reported in Cheng & Murillo (1984), this mechanism ‘explains why a swept-back 
wing has a lesser margin to  tip stall than an unswept or swept-forward wing’. 

The asymptotic theory has also been extended to unsteady flow. Most authors 
have considered harmonic perturbations of the boundary conditions. To characterize 
the periodic structure of the wake, it is convenient to  introduce the wavelength h = 
2nU/w, where U is the free-stream velocity and w is the radian frequency of 
perturbations. Under the hypothesis of a high-aspect-ratio wing (C 4 B),  Cheng 
(1976) has identified five frequency domains : the very low frequencies (B Q A ) ,  the 
low frequencies (B = O(A)) ,  the intermediate frequencies (C 6 h 4 B ) ,  the high 
frequencies (C = O(A)),  and the very high frequencies ( A  4 C). 

One major result, brought out by the lifting-line theory of unswept straight wings, 
consists of a self-averaging effect when the frequency is high or very high. This result, 
originally formulated in a simplified form by James (1975) and by Cheng (1976), has 
been thoroughly studied by Guiraud & Slama (1981). They showed that, in the high- 
and very-high-frequency domain, the three-dimensional corrections due to the finite 
aspect ratio are of O(log(A)/A2) instead of being of 0(1/A) as in the steady case. 
They explained the phenomenon by a double scale mechanism. Indeed, h is the 
lengthscale of the unsteady perturbations induced by the wing. These perturbations 
are convected in the wake far downstream in the outer domain at distances of order 
B and greater. Hence, in a small sheath surrounding the wake, the two lengthscales 
A and B must be accounted for, whereas outside the sheath only the lengthscale B 
need be considered. I n  the high-frequency domain, the persistent small lengthscale 
A is solely responsible for the self-averaging phenomenon. It was proposed in Cheng 
(1976) that  this phenomenon was also likely to occur on swept and curved wings of 
high aspect ratio. Actually, i t  is shown here that a term, proportional to the local 
curvature and the local sweep angle, is still of 0(1/A) in this frequency domain. It 
finally becomes of O(1og (A) /A2)  in the very-high-frequency domain. 

Another interesting phenomenon concerns the shape of the induced downwash 
with respect to  the chordwise location. In  early papers by James (1975) and Van 
Holten (1976) on unsteady straight lifting-line theory, it was assumed that, like in 
the steady case, the induced downwash was constant over the chord for the entire 
range of frequencies. Ahmadi & Widnall (1985) showed that this assumption was 
asymptotically correct only for very low frequencies (B 4 A ) ,  and they proved that 
in the low-frequency domain (B = O(h) )  the downwash had a sinusoidal dependence 
on the chordwise variable. Their work was focused on these two frequency domains. 
It is shown, in further developments of this paper, that Ahmadi & Widnall’s second 
conclusion is actually true for the entire range of frequencies. For straight upswept 
wings, at the first order of approximation, the downwash behaves like a sine of 
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wavelength A. This shape, however, is altered if sweep and curvature are taken into 
account. 

Because of the difficulties involved, previous work published on unsteady lifting- 
line theory either covers a small frequency domain or does not take into account 
sweep and curvature effects. The cause of non-uniformity in the frequency domain 
has been analysed by Sclavounos (1987). It comes from the desire to asymptotically 
relate the wavelength A of perturbations to either the span lengthscale B or the chord 
lengthscale C. Such a comparison automatically restricts subsequent considerations 
to a narrow frequency domain. The restrictions in terms of sweep and curvature of 
previous MAE approaches seem to come from the use of curvilinear coordinates in 
the inner domain. These coordinate systems render the inner problem somewhat 
untractable. It is the purpose of the present work to present a lifting-line theory 
which is valid over the entire range of frequencies, whatever the shape of the wing. 

The present paper mainly consists of the generalization of Guermond (1990) to 
unsteady flows. The solution is based on the integral equation formulation of the 
problem. The technique, pioneered by Kida & Miyai (1978), consists of asympto- 
tically solving the Fredholm equation of the first kind which links the unknown 
pressure jump and the normal velocity imposed on the wing. An asymptotic 
expansion of the surface integral with respect to A is found using the finite-part 
integral theory introduced by Hadamard (1932) and a particular technique developed 
in Guermond (1987, 1988, 1990). At each approximation order the problem reduces 
to a classical, two-dimensional, integral equation, whose unknown is the pressure 
jump, and whose right-hand side depends only on the previous approximation orders 
of the solution. The finite-span corrections of the pressure jump are explicitly 
calculated up to O(l/A). An extensive numerical study has been carried out and 
comparisons with published results are made. 

2. Formulation of the problem 
2.1. General assumptions 

Consider a Cartesian coordinate system (OXYZ) and a uniform, incompressible, 
irrotational stream of an inviscid fluid with density p. The velocity U of the free 
stream is directed along the OX-axis. The OZ-axis and the plane Z = 0 are referred 
to as the vertical positive direction and the reference plane. Consider a thin, almost- 
planar wing of large aspect ratio placed in the above-mentioned flow. The wing is 
sufficiently close to the reference plane that the classical linearization process applies. 
The projection of the wing surface and its trailing vortex sheet onto the reference 
plane are denoted by S and Z. 

The spanwise mean geometry of the wing is modelled by a smooth line L (see figure 
1) whose equation is 

This line may not necessarily be on 8 but must be at  a distance of S, in the topological 
sense, of order C: 

X, = Bx,(Y) for allM,(X,, Y )  on L. (1) 

sup p,?, PI = O(C). (2) 
M EL 

P E S ~ M ~ X  

For the sake of simplification in further developments, L is taken as a reference line 
in the streamwise direction, and the following new set of non-dimensional coordinates 
is defined : 

X = Cx+Bx,(y), Y = By. (3) 
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FIQURE 1.  Definition of the Cartesian coordinate system and geometric parameters. 

The line L is assumed to be smooth in the sense that the function xJy) is of order one 
and has as many derivatives with respect to y as needed, these derivatives also being 
of unit order. Using the non-dimensional coordinates, the equation of the wing 
planform S is given by 

cl(y) < x < c,(y) for -1 < y < +1, (4) 
where cl(y) and ct(y) are the abscissae of the leading edge and trailing edge 
respectively. Owing to the condition (2), x, cl(y), and ct(y) are of order one. The 
geometry of the wing is assumed to be smooth in the sense that functions cl(y) and 
cJy) have as many derivatives with respect to y of order one as needed. The local non- 
dimensional chord length c(y) is given by the difference between ct(y) and cl(y). 

The wing is assumed to undergo small, time-harmonic, vertical deformations or 
displacements, whose amplitude may vary along the span on the lengthscale B. The 
deformations, through the linearization process, are equivalent to small periodic, 
vertical disturbances of the incident flow. The displacements are due to heave and 
pitch motions. From now on, complex notation is adopted, and is implicitly 
understood that only the real part of the product of all complex quantities with the 
time factor eiwt is of importance. Under the linearization hypothesis, it is not 
necessary to make a distinction between deformations and displacements ; only the 
vertical component of the velocity of these perturbations is of interest. The complex 
amplitude of the velocity is defined by W ( X ,  Y ) ,  and w is the non-dimensional ratio 
of w to u. 

2.2. The integral-equation formulation 
The chosen hypotheses imply that a perturbation velocity potential @ exists. 
Defining the acceleration potential Y = - P / p ,  where P is the perturbation pressure, 
a simple relationship between @ and Y is expressed by the linearized form of the 
Bernoulli law : 

Y = (iwf U a / a X )  0. (5)  
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Let 93 be the differential operator (iw+ Ua/aX) .  Provided Y vanishes at  infinity, the 
inverse operator is found after some analysis: 

A formulation in terms of the acceleration potential Y is sought, because Y is 
continuous everywhere except across the wing and the pressure jump is directly 
obtained from it. The PDE system satisfied by Y is classical and can be put into the 
form 

(7) 

V2Y = 0, 
aY/a2 = W ( W ( X ,  Y)) on S, 

[v = 0 a t  the trailing edge, 
00 

Y+O. J 
Here, [!PJ is the jump of Y across S; it is equal to YU- !PI, where subscripts u and 
1 denote the upper and the lower sides of S respectively. The system (7) can be solved 
by means of the Green's representation theorem, and for all points M(X,, YM,ZM) 
belonging to the flow domain the acceleration potential can be cast in the form 

where P(X, ,  Y,, 0) is any point on S, and G(M, P) is the elementary Green function : 

1 
4nwPI * 

G(M, P) = -~ (9) 

The tangency condition is imposed by applying the operator a-1 o 3/32, to Y and 
taking the limit as 2, tends to zero. The following result is obtained: 

It is important to note that the limiting process (2, + 0) implies that the integrals 
are defined in the finite-part sense (FP) as introduced by Hadamard (1932). A 
thorough review of Hadamard's theory may be found in Lavoine (1959, 1963), and 
some of the aspects pertaining to the present problem are summarized in Guermond 
(1990). 

At this stage, the problem consists of inverting a Fredholm equation of the first 
kind. Following previous successful asymptotic treatments of this problem by Kida 
& Miyai (1978) and Guermond (1987, 1990), an asymptotic expansion of the integral, 
with respect to A ,  is sought. 

3. Asymptotic formulation of the integral equation 
3.1. The non-dimensional equation 

In order to facilitate the asymptotic sorting of terms, dimensional variables X,, Y,, 
X,, and Yp are replaced by the non-dimensional variables x, y ,  6, and rj as introduced 
in (3). The non-dimensional quantities associated with @, Y and V are defined by 

@ = UCq5, Y = vZ$, V = Bv. (11) 
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As the two lengthscales C and B are independent, it  is necessary to define two reduced 
frequencies, k and v, based on them : 

Note that v is equal to kA. In the following, k and v will be referred to as the chord 
reduced frequency and the span reduced frequency respectively. In further 
developments, no assumption is made on the order of magnitude of these reduced 
frequencies. As a result, the present theory is valid whatever the frequency. 
Furthermore, in order to separate the quasi-steady effects from the purely unsteady 
ones, an integration by parts of the right-hand side of (10) with respect to w is 
performed. After some simple calculation, (10) can be rewritten as: 

k = wC/U,  v = wB/U. (12) 

x d[dy dw. (13) 
The first term of the right-hand side corresponds to the quasi-steady downwash. 

It is the velocity which would be induced on the wing if the jump of the acceleration 
potential [$I, which occurs at  time t ,  were imposed on S for an infinite duration. For 
further reference, this velocity is denoted by w,. 

The second term on the right-hand side of (13) is the purely unsteady downwash. 
It is denoted by w,. 

The interesting consequence of our introduction of non-dimensional variables is 
that the order of magnitude of the integration variables clearly appears. Hence, the 
term A-l(x-6) is of order A-l,  whereas terms like x o ( y ) - x o ( ~ )  and y-7 are of unit 
order. It is clear now that asymptotic expansions of w, and w, may be found if the 
integrals are expanded with respect to the small variable A-'(x- 6 ) .  

3.2. Asymptotic expansion of w, 
In a first step, an asymptotic expansion of the quasi-steady downwash w, is sought. 
Actually, the procedure which has to be used is exactly the same as that which has 
been developed in Guermond (1990) to treat the steady case. In order to take 
advantage of existing tools which have been devised to find asymptotic expansions 
of line integrals, the chordwise and the spanwise integrations are carried out 
separately. The downwash w, is put into the following form: 

W ,  = A-l FP Srn I(s) d& (14) 
-a 

where 8 is the small parameter A-l(x-6) and I ( € )  is defined by 

The notation L(5) means that the integration is performed along a path where [ is 
constant; these [-lines are parallel to L. The operator %' is defined by 

Here, His  the classical Heaviside function. The operator % is introduced so that the 
pressure jump is implicitly zero off the wing. Hence, the problem consists of finding 
an asymptotic expansion of I (€ ) .  The method for iinding the asymptotic expansion 

m1c.n ( 6 , ~ )  = [~ (5 -~ , (11 ) ) -~ (5 -~ , (11 ) )1  n1c.n ( ~ 7 ) .  (16) 
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in question with respect to the sequence (€3 log ( B ) }  is given in Guermond (1990). At 
this point it is necessary to assume that the variation of the flow along the span 
occurs on the long lengthscale B. This assumption implies that [$I is smooth along 
the span and has derivatives with respect to y of order one. The asymptotic 
expansion of I ( € )  is carried out up to o(l) ,  and the result is 

where functions I , ,  11, and I ,  are given by 
I(@ = ~ 0 0 ( E ) / ~ + 4 ( 5 )  1% Id + I , ( E ) + O ( l ) ,  (17) 

]dry (20) +-FPI 1 -[l+ swn xo(Y)-xo(r) 
4R L(0 (Y-71, [(xo(Y)--20(r))2+ (Y-r)21t 

where r ( y )  is the local radius of curvature of the line L,  and A ( y )  is the angle between 
the local tangent of L at point Mo(xo(y) ,y ,O)  and direction OY. The point Mo is the 
projection of M ( x ,  y ,  0) onto L along the OX-axis. 

The physical interpretation of the expansion (17) will be given below. The final 
form of w, will be obtained by integrating I ( € )  with respect to 6. 

3.3.  Asymptotic expansion of w, 
In the same spirit as in the previous section, the chordwise and spanwise integrations 
are separated as follows: 

where J ( E )  is given by 
W, = A-l FP raJ J(B) dE, (21)  

J(B) = -ive-'"FP e'"I(v) dv. (22)  

-aJ 

s_, 
At this stage, the problem is reduced to finding an asymptotic expansion of J ( E ) .  In 
order to isolate a domain in which v is asymptotically small, the outer integral is 
divided into J!aJ and J;. In the second integral v is necessarily O(B) ; as a result, the 
asymptotic expansion of I ( € ) ,  (17), can be re-used replacing E by v. After some 
manipulation, the asymptotic expansion of J(B) is found up to o( 1) : 

J(B) = -ive-'"EIo(E)FP -dv lme: 
- iv e-IYE [ eivV [I(v) - I ( ( )  y] dv +Il([) 1 eivV log 1v1 dv 

-m 

+I,($) eiuu dv] + o( 1). 
0 

Note that the term -ive-'"I0(~) FPS!, eiuu dvlv has been added and subtracted in 
order to make a two-dimensional contribution appear. This operation will be 
physically interpreted below. 
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Up to this point, it has not been necessary to make any hypothesis on the order 
of magnitude of the reduced frequencies v and k. As a consequence, the terms denoted 
by o(1) are asymptotically negligible on the entire frequency domain when A 
increases to infinity. Now, the difficulty consists of finding a uniformly valid 
asymptotic arrangement of the terms which have been retained. This task is carried 
out in the next sub-section. 

3.4. Discussion on the asymptotic arrangement 
Before any consideration on the hierarchy of the terms, expressions (23) and (17) are 
summed. The sum ofl(e) and J(s )  is obtained after replacing e by its value, ( z - [ ) / A ,  
and replacing v by 7 / A  in the integrals where s was the upper bound: 

+I2( 6)  [ 1 - iL e-ik(s-n Jx’ eik7 dr] + o( 1) .  

For the reader who may be interested in the calculations, it is worth noting that, for 
the integral defined in the finite-part sense, the variable change, v = 7 /A ,  is valid for 
every value of e except zero. If 8 is zero the equality is not satisfied unless a corrective 
term is added. As a result the equality is true almost everywhere on the chord of the 
wing except on the line L(z).  The surface of L(z)  being zero, the equality will be exact 
once the integration with respect to 6 is performed. For additional information on the 
rules of variable changing on finite-part integrals, the reader is referred to Lavoine 
(1959, 1963). 

At this stage, some comments on the asymptotic arrangement of the right-hand 
side of (24) can be made. On the one hand, it is an easy task to verify that the first 
term of the right-hand side of (24) is asymptotically dominant throughout the entire 
frequency domain; it is of O(A). This term is the two-dimensional contribution. On 
the other hand, the relative order of the corrections to the O(A) leading term needs 
to be discussed. The corrections can be classified into three classes : the quasi-steady 
terms, the unsteady terms which involve the chord reduced frequency, and the 
unsteady terms which involve the span reduced frequency. It is clear that, in the low- 
frequency domain (B = O(h),  i.e. k = O(l/A) and v = 0(1)), the leading corrections 
are of O(1og ( A ) )  and O( 1) .  Among the unsteady contributions, only the term related 
to the span reduced-frequency scale, v, is significant. As the frequency increases, the 
unsteady terms related to the chord reduced-frequency scale, k, become more 
significant, and the balance of the terms changes dramatically. In the Appendix it is 
shown that, in the high-frequency domain (C = O(h),  i.e. k = O(1) and v = O(A) ) ,  the 
quasi-steady terms are balanced by the unsteady ones, and the result is a term of 

As the frequency increases and reaches the very-high-frequency domain, the total 
correction finally becomes negligible. These results are summarized in table 1.  
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Very low 
frequencies 

O(10g (A  )) 
Quasi-steady terms O( l )  

Terms related to v 41) 

TABLE 1. Corrections to the leading terms in the asymptotic arrangement of equation (24) 

In conclusion, the terms due to the chord reduced-frequency scale, the span 
reduced-frequency-scale, and the quasi-steady contribution are completely in- 
terwoven. Considering them separately would necessarily result in a theory which 
would not be uniformly valid. As a consequence, the last three terms of the right- 
hand side of (24) must be considered together. 

3.5. The asymptotic equation 
The asymptotic expansion of (13) is readily evaluated by integrating (24) with 
respect to 5: 

where To and Xl are linear operators. 
X,, is the classical two-dimensional operator : 

Here, the finite-part integral reduces to a classical Cauchy principle value. 
The operator X, is defined by 

- iv '(') dw + W,(M~)} ,  2ncos(A) -m w 
where functions G(y) and H ( x ,  y )  have the following definitions 



436 

and the last term, wo(Mo), can be put into the form 
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The dot above the G in (27) signifies a derivative with respect to y .  

noting concerns the integration with respect to 
(Cl/Cly)X[$] in (20). The following relation is used: 

The calculations present no particular difficulties. The only technical point worth 
of the term proportional to 

where f (6)  is any integrable function. The introduction of the operator X justifies the 
permutation of the integral sign and the derivative. It seems that this little point 
may have been overlooked in the pioneering work of Kida & Miyai (1978). 

The logarithmic contributions have not been separated from the other since, as 
shown in $3.4, such a separation would not have been uniformly valid. Nevertheless, 
it is easy to verify that the asymptotic expansion is still of the Poincar4 type with 
respect to the asymptotic sequence {l/A'}. In other words, at each approximation 
order, J ,  the following equality holds uniformly on the entire frequency domain: 

4. Physical interpretations 

links with the MAE approach are emphasized. 
In order to interpret (25), the physical meaning of each term is sought, and possible 

4.1. Physical meaning of G( y )  
The velocity potential, q5, and the acceleration potential, $, are linked together by 
the operator, 9, and their respective jumps across the reference plane satisfy 

where T(7) is the circulation around the wing at  the spanwise location 7. The 
following equality is readily derived from the system (33), (34) and (28) : 

f(7) = e-ikct(9) G(7).  (35) 
Therefore, with the exception of the phase term, e-ikct(9), G(7)  represents the 
circulation. 

It is also of interest to consider the vorticity distribution generated by the wing 
motion. Using Hess's (1972) theorem, the velocity induced by the potential jump, 
191, may be shown to be the same as that induced by the vorticity distribution whose 
strength is C(n A V[q51), where n is the local normal vector. The vorticity distribution 
y may be decomposed into y = yz + y V ,  where yz is the component along the OX-axis 
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and yr is the component along the tangent of the L(5) line, which is inclined on the 
OY-axis with the angle A ( y ) .  The magnitudes of vectors yx and yy are given, for bound 
vortices and free vortices, by 

4.2. The domain decomposition 
Following the approach of the MAE technique, the influence of the vorticity 
distribution at the point M may be decomposed into that of the vortices located at 
distances of order C ,  and that of the vortices located at distances of order B or larger. 
In the reference plane, the inner domain, I, is defined as being the set of points whose 
distance from M is of order C. The diameter of I is set to an intermediate lengthscale, 
D, characterized by c . g D . g B .  

Two outer domains are defined. The first one, denoted by O,, is constituted of the 
points located in the wake of the inner domain at distances of order B or larger. The 
width of Ow, is set to the intermediate reference scale, D. The second outer domain, 
denoted by 0, is composed of the points situated outside Ow, and at distances from 
M of order B or larger (see figure 2a).  The velocity induced at M by the vorticity 
distribution is the sum of the contribution of the three domains, I, Ow,, and 0. 

4.3. Velocity induced by domains 0 and Owti, 
In the domain 0 U Owi, B is the reference lengthscale in both the spanwise and 
streamwise directions. As a result, from this domain, the details of the geometry of 
the wing in the chordwise direction become insignificant ; the wing degenerates into 
the line L, andM merges into Mo (see figure 2a) .  In this outer model, the line L is a 
lifting line as in Prandtl's model. Using the outer variable, v, the distribution of the 
jump of the velocity potential is given by 

Let wout(Mo) be the finite part of the downwash induced at  M ,  by the vorticity 
distribution of the outer domains 0 and Owi. It is obtained using the Green's 
representation theorem and differentiating the resulting velocity potential with 
respect to z: 

[q51 (v, 7) = e-imG(V) for 0 C w. (41) 

Substituting (41) into (42) and integrating by parts with respect to v leads to 

This equation implies that wo(M0) is the finite part of the downwash induced at Mo 
by the lifting line whose shape is L and whose strength is G(r]).  

WoIltWo) = WO(M0).  (43) 
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(4 

- ike-‘*”GQ 

Y 

Wing 
Y 

Wake 
FIQURE 2. (a) Definition of the outer domain, 0 U Ow,. Note the strip Ow, extending downstream 

of the inner domain, I .  (a) Close-up of the inner domain. Note the two systems of vortices. 

Now, let us interpret the phase term e-ikz which multiplies w,(M,,) in (27). Let 
w,,,(M) be the finite part of the downwash induced at  M by the vorticity distribution 
of the outer domains 0 and Ow,. In the outer domain, no distinction can be made 
between the points M, and M or between the lines L and L(x).  As a consequence, L(x) 
can also be taken as the reference line. Introducing the new outer variable v‘ defined 
by : 

(44) 
the jump of the velocity potential can be rewritten : 

[I$] (v’, 7) = e-ikze-iYv’G(7) for 0 < v’, (45) 

V’ = v - x / A ,  

where the exact condition, -x /A  < v’, is replaced by its first approximation : 0 < d. 
Under this condition, the calculation of w,,,(M) is the same as that of wout(Mo) with 
the exception that the phase reference is shifted from L to L(x) : 

The physical interpretation of e-ikzwo(Ho) is now evident. 
wout(M) = e-ikzw,(Mo). (46) 

4.4. Velocity induced by Ow, 
In the domain Owi, the lengthscale in the spanwise direction is C ,  whereas B is the 
lengthscale in the streamwise direction. The width of Ow, being of order D ,  at the first 
approximation order, Ow, may be considered as a semi-infinite vortex sheet, whose 
straight and inclined boundary matches the local tangent of L at M,, and whose 
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vorticity strength y,, is -iue-'""G(y)/A cos (A). Note that the vortices are aligned 
with the support lines, L(v). The downwash, wwi(Mo), induced at M ,  by such a vortex 
distribution is readily evaluated : 

Using the same arguments as for wout(M), and changing the phase reference from L 
to L(x) ,  the downwash induced at  M is deduced from that at  M, by 

wwi(M) = e-ikzwwi(Mo). (48) 
This term is very important. It means that spanwise flow perturbations of 

lengthscale of order C, which are generated in the inner domain, I, by the wing 
motion are convected in the outer wake and are still active when they reach distances 
of order B and greater. Thus, in O,, the inner lengthscale, C, has a role as important 
as that of B. This is the double scale phenomenon which was recognized by Guiraud 
& Slama (1981). The domain Ow, plays the same role as that of Guiraud & Slama's 
narrow sheath surrounding the wake. 

4.5. Velocity induced by the inner domain 
In  the inner domain, C is the common reference scale for the streamwise and 
spanwise directions, and the diameter of I is of order D. This domain is composed of 
the wing section on which M is situated together with its close wake (see figure 2 b for 
a close-up of I). 

At the first approximation order, only the 7,-component of the vortices is of 
interest (see (38) and (39)). Furthermore, the vortices may be considered of constant 
strength in the spanwise direction, and the A([)-lines can be approximated by 
inclined, straight lines parallel to the local tangent. The downwash induced by such 
vortex lines has a simple expression given by the Biot-Savart law, and it may be 
decomposed into the downwash induced by the bound vortices, WObound(M), and that 
induced by the free vortices travelling in the wake, wOlree(M) : 

It is clear that wObound(M) and w,,,,,(M) are two-dimensional contributions, but their 
sum is not exactly the two-dimensional downwash, woin(M), because, however large 
the ratio D / C  is, worree(M) will never include the influence of the vortices which have 
been convected out of I at distances of order B or larger. The vortices in question are 
those of Owi ; and the downwash they induce at  M is w,(M). This velocity may be put 
into the alternative form: 

As a consequence, the exact two-dimensional downwash, woin(N), is the sum of 
wObound(M), w,,,,,(M), and w,(M). Hence, the physical interpretation of operator .%, 
is given by 

(52)  0- 
cos (A) - WObound(M) + wOlree(M) +wwi(M) WOin(M)* 
x w-1 
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At the second order of approximation, the curvature of L(S)-lines, together with 
the y,-component of the vortices (see (36) and (37)), has to be taken into account. It 
may be shown that the leading term of the asymptotic expansion of the downwash 
induced by the y, vortices and the curvature of yu vortices is 

In conclusion the normal velocity induced by the inner and outer vortex systems 

(54) 
The last term w,,(M) has to be subtracted once, since it is already taken into account 
in woi, and wo,,(M) (see $3.3). As was our intention, each term on the right-hand side 
of (25) has been given its physical interpretation. 

is given by the sum 

wCM) = woin(J0 + wlin(M) +wout(M)-wwi(M +o( l /A)*  

5. Asymptotic solution 

fundamental results are derived. 
In this section, it is shown how (25) can be asymptotically solved, and some 

5.1. A triangular system 
Even though the asymptotic expansion of (13) has been carried out only up to o(l) ,  
in principle there is no limit to obtaining higher orders. Using the systematic 
technique developed in Guermond (1987, 1988, 1990), the asymptotic expansion of 
(13) with respect to the sequence { 1/A'} can be obtained, with some algebraic effort, 
up to any order. Let c; a, X,[$]/A' be such an expansion, where a, is l/cos ( A )  and 
every a, is equal to 1 i f j  is not zero. Then, it is clear that the jump of the acceleration 
potential can be expanded with respect to the {l/A1} sequence. Re-introducing the 
asymptotic expansion of [$] into that of (13) yields a set of J +  1 equations : 

(55) X O W O I  = cos (4 w(Mh 

X,[$,] = -COS ( A )  Xi[$.,] for 1 < j < J ,  
r+1-5 
( 9 0  

with the corresponding Kutta conditions at  the trailing edge : 

[$,I = 0 for t =  c&), o ~j G J .  (57) 

These conditions are of the utmost importance, for they permit unique solutions of 
problems (55) and (56) to be found. 

Each equation of system (55), (56) is of two-dimensional type. Inverting operator 
X, is a classical problem and presents no difficulties, see Ashley & Landhal (1965, p. 
254) for details. The system is triangular; in other words, at each approximation 
order the right-hand side depends only on the previous orders. Therefore, the system 
can be progressively solved from the top to the bottom. 
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5.2. Comments on the induced downwash 
Let Xi' be the inverse operator of Xo and I[$o] be the solution of (55), (57). In  the 
present case, the jump of the acceleration potential is given, up to o(l/A), by 

[@.I = cos(/i)X;l w(M)--XJ$.,]  +o(l/A). 
[ A  l l  

Under this form, the downwash induced by the three-dimensional effects is readily 
recognized as being - C O S ( A ) X ~ I [ ~ ~ ] / A .  If the mean line, L, is straight and 
perpendicular to the stream, it is clear from (27) that the downwash has a sinusoidal 
dependence on 2, the wavelength being 27c/k. This result generalizes that of Ahmadi 
&, Widnall (1985) for the entire frequency domain. This sinusoidal dependence is 
altered through the influence of the function H(M) as curvature and inclination of the 
wing are to be accounted for. 

5.3. Self-averaging and double-scale effects 
In order to understand the influence of the frequency on the three-dimensional 
corrections, it is worth studying the degenerations of the present theory with respect 
to the frequency. 

From table 1 it may be verified that in the low- and very-low-frequency domains 
two corrections of slightly different orders appear. One is O(l/A) whereas the other 
is O(1og @ ) / A ) .  This result is quite classical and needs no further comments. 

As the frequency increases and reaches the high-frequency domain the three 
downwashes, wlb, wOUt, and - wwi, compete (see the Appendix) and their combination 
yields a downwash proportional to the local curvature and sweep angle : 

e-ikZ 1 sin(A) a 
WIM + Wout - wwi = - - A [ 4 m ( y )  +--I 27c t3y 

The three-dimensional influence which is characterized by integrals involving the 
spanwise direction have been suppressed. This cancellation phenomenon corresponds 
to what was previously recognized by Cheng (1976) as the self-averaging effect. 
Actually, this effect is a consequence of the double-scale phenomenon in the sense 
that it is a consequence of the persistence of the small lengthscale, C, at distances of 
order B and larger. Furthermore, since wout is the finite part of the velocity induced 
by both domains 0 and Ow,, (59) means that, in the high-frequency domain, the 
influence of the vortices of the domain 0 is asymptotically negligible, and the 
contribution of the two outer domains reduces to the finite part of the downwash 
induced by the narrow strip Owi. 

Note that if the wing is straight and unswept the term wlin is zero and (59) reduces 
to woUt-wwi = o(l/A). In these conditions the finite-span correction is of o(l /A);  
actually it may be shown to be of O(1og (A) /A2) .  

When the wing is curved or swept the right-hand side of (59) is not zero, and the 
finite-span correction is somewhat stronger than that in the previous case; it is of 
O(l/A). The order of magnitude of this correction is higher than it was expected by 
some authors. 

In the very-high-frequency domain, A = o(k ) ,  the induced downwash (59) becomes 
of O(1og @)/A2) whatever the geometry of the wing. 
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5.4. The problem of the mean line position 
A question which may be raised about the present method concerns the mean line 
location. Where should this line be located and what is the influence of its position 
on the asymptotic solution ? 

The first part of the question has been answered in $2.1. In order to answer the 
second part, let F be a physical quantity, related to our problem, for which an 
asymptotic expansion is sought. Let F: and F i  be two asymptotic expansions of F, 
up to order J ,  corresponding to two different mean line locations, L, and L,:  

F: and F i  are related to F by 

F = F:+o(l/AJ), F = F;+o(l/AJ). (61) 
Subtracting the second equation from the first one shows that Fi differs from F: by 
terms of o ( l / A J ) .  This means that expansions F: and Fi are equal in the asymptotic 
sense. In other words, if the line L satisfies the hypotheses of $2.1, the asymptotic 
solution will not depend, in the asymptotic sense, on a particular choice of L .  

5.5. Limitations of the lifling-line model 
There are two inherent limitations to the lifting-line model. The first is that the wing 
tips must be cusped in order to allow slow variation of [$I in the tip regions. If this 
condition is not satisfied, the present asymptotic expansion is not uniformly valid in 
the vicinity of the wing tips. The diameter of the region in question is of O(C).  This 
restriction is classical and has been extensively discussed by Van Dyke (1964). 

The second limitation concerns the predominance of the two-dimensional problem 
(55). In certain conditions the variation of the flow along the span may be so rapid 
(on the small scale C) that the lifting-line concept may not be relevant. In order to 
illustrate this phenomenon, consider a high-aspect-ratio wing operating under 
sinusoidal gust conditions. The imposed normal velocity takes the form 

w(z,  y) = wo e-iuzo(Y) eikz. 

[$.,I = wo cos ( A )  e-iuzo(~).X~l[eikz]. 

(62) 
Using the fact that the operator .Xi1 is linear and does not operate on the variable 
y, from (55) we obtain 

As a result, owing to the derivatives a/ay and d/dy in (27), the induced downwash, 
- cos ( A )  Xl [$o] /A,  contains terms proportional to uli.,(y)/A. The necessary condition 
for the asymptotic expansion (58) to be correctly arranged is that' vko(y) must be of 
o(A). As a result, if the wing is straight and unswept, that is &,(y) = 0, there is no 
condition imposed on the order of magnitude of u ,  and the present theory is 
uniformly valid throughout the entire frequency domain. If the wing is curved or 
swept, that is ko(y)  = O(l ) ,  then u must be of o(A). This means that if the frequency 
is high or very high, the two-dimensional solution is not dominant. As a result, in this 
frequency domain the lifting-line concept is not relevant. Actually, in the frequency 
domain in question, the correct two-dimensional problem corresponds to that of an 
infinite swept wing with a constant chordlength in a sinusoidal gust. In this case, the 
variation of the flow occurs on the wavelength scale, A ,  of the incoming sinusoidal 

(63) 

gust. 
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In conclusion, this example shows that the present theory is consistent only if it 
satisfies the lifting-line axiom: [$.,I must vary along the span on the lengthscale B. 
This condition is uniformly satisfied in terms of frequency and wing geometry, if the 
wing undergoes heaving or pitching motions, whose amplitude may vary along the 
span on the scale B. 

6. Lift and moment 
In order to illustrate the present method, the lift and the nose-down pitching 

moment per unit span are calculated explicitly up to o(l/A). The moment is taken 
about an axis along the midchord line. The non-dimensional lift, Z(y), and moment, 
m(y),  are introduced : 

6.1. Two-dimensional contribution 
The first task consists of evaluating the two-dimensional components. This 
calculation is classical. In order to facilitate the presentation, the lift operator, .=.Yo, 
is introduced : 

where f(6) represents the imposed normal velocity. The parameter k, is the local 
reduced frequency and is defined by k, = i k c ( y ) .  Furthermore, C(k,)  is Theodorsen’s 
function (Theodorsen 1935) : 

H r ) ( k l )  is the classical Hankel function of the second kind of order n. With these 
definitions, the two-dimensional lift, l 0 (y )¶  is equal to .=.Yo(w). 

Likewise, it is convenient to define the moment operator, do : 

With this definition, the two-dimensional moment, mo(y), is equal to do(w). 

6.2. Three-dimensional corrections 
The total lift and moment are readily obtained from (58) : 

l(Y) = co5 ( A )  ~ o ( ~ ( ~ ) - - / A ~ l n ~ o D ) + o ( l / ~ ) ,  (68) 
w) = C O S ( ~ ~ ~ ( W ( M ) -  l / A ~ l w o n ) + o ( l / A ) .  (69) 

The calculation of the three-dimensional corrections presents no particular 
theoretical difficulty. As already mentioned in 85.2, the induced downwash is 

15 FLY 229 
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Widnall’s results, obtained in the low-frequency domain for a straight unswept wing, 
can be recovered by expanding the present ones with respect to Ic with the hypothesis 
k = O(l/A). 

7. Numerical results 

Comparisons with other approaches are summarized below. 
In order to test the present theory, a numerical program has been developed. 

7.1. Comparison with Ahmadi & Widnall’s results 
Ahmadi & Widnall devised a lifting-line theory for unswept wings of large aspect 
ratio oscillating at  low frequency. In  order to illustrate their approach the authors 
considered an elliptic wing oscillating in pitch and heave. The authors defined the 
aspect ratio A, as (2B)2/S,, where S, is the wing planform area and B the semispan. 
The root semichord is 4B/nAa; in order to be consistent with our notation, let C 
denote this ratio. 

The reduced frequency k is defined as oC/U.  The magnitudes of the heave and 
pitch motions are w = iik&, and w = &(1+ ikz) respectively. The lift and moment 
coemcients are defined by 

where subscripts H and P denote heave and pitch respectively. 
Figure 3 shows the total lift and moment coefficients as vector diagrams for a range 

of values of k for an elliptic wing whose aspect ratio, A,, is equal to 16. As expected, 
the results obtained by the present theory (circles) are in full agreement with that of 
Ahmadi & Widnall (triangles) in the low-frequency domain. Furthermore, as the 
reduced frequency, k, becomes of order one, the results obtained from the present 
theory converge to the two-dimensional results (solid lines), whereas the results from 
the low-frequency theory diverge as noted by the authors. 

Figure 4 shows the amplitude and phase of the induced downwash, 

- cos ( A )  Wl,/A& 
for an elliptic wing in pitch. The present theory is in agreement with the low- 
frequency theory when k is o(1). The aspect ratio, A,, is equal to 6. For the same 
reasons as stated above, some discrepancy is evident when the reduced frequency 
increases. 

7.2. Comparisons with a panel method 
In order to complete the series of numerical tests, we now compare the pressure jump 
distribution given by the theory with that given by a panel method that Cheng & 
Murillo (1984) used for testing their low-frequency theory. The numerical method 
was devised by Albano & Rodden (see Cheng & Murillo 1984 for further references). 

15-2 
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FIGURE 3. (a), (b) Complex vector diagram of - C,, and - C,, as functions of k for an elliptic wing 
in heave. (c ) ,  ( d )  Complex vector diagram of -CLP and - C M p  for an elliptic wing in pitch. (A, = 
16) ; Re and Im respectively denote real and imaginary parts of the coefficients ; -0-, 2D theory ; 
A, low-frequency theory ; 0,  present theory. 

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 
Y Y 

3 300 
FIGURE 4. (a) Amplitude and (b) phase of the downwash for an elliptic wing in pitch (A, = 6) ; lines 
represent result from the present theory, symbols represent results from the low-frequency theory : 
n , k = 0 . 1 ;  ., k = 0 . 2 ;  A, k = 0 . 3 .  
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FIGURE 5. Chordwise pressure distribution on a parabolic fin in steady flow : 
A, the panel method ; . . . . . . , the 2D approximation ; -, the present method. 

The set of numerical results concerns a parabolic wing. The semispan and the root 
semichord are chosen as lengthscales B and C respectively. The wing planform is 
described by the set of equations : 

K = 0, xo(y) = &', c(y) = 2(1- y2) (1 + y')i for - 1 < y < + 1. (83) 

The ratio of B to C, still denoted by A,  is equal to 15. 
Figure 5 represents results for the chordwise pressure distribution, - &J, versus 

(x-cl(y))/c(y) in the quasi-steady limit (v+ 0). The flow tangency condition is 
expressed as w = 1. The pressure distribution determined from the present theory 
(solid lines) and from the panel method (triangles) are shown for five span locations : 
y = 0.025, 0.175, 0.375, 0.575, and 0.875. The consistent agreement of the present 
theory with the panel method is clear. 

Figure 6 represents the chordwise pressure distribution, -&J, for a pitching 
motion whose reduced frequency v is equal to 1, and whose axis is located at 
X, = Bx,, where x, = -0.2. The flow tangency condition is expressed as w = - 1 - 
iv(xo(y) - x, + x/A). Once more, the agreement of the asymptotic theory with the 
numerical method is clear. 
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FIQURE 6. Chordwise pressure distribution on a parabolic fin in pitching oscillation : symbols, 
the panel method ; * * * * . * , the 2D approximation; -, the present method. 

Figure 7 represents the chordwise pressure distribution, - &]l, for a feathering 
motion whose reduced frequency, u, is equal to 1. This motion results from the 
combination of a primary heaving-pitching motion with the pitch axis a t  X, = Bx,, 
and a secondary heaving-pitching motion whose amplitude depends on the span 
location, and whose pitch axis is set a t  the normal distance X, = Cxb from the 
centreline. This kind of motion models the fluttering of fish fins. See Cheng & Murillo 
for additional details on the animal propulsion aspect of this problem. For the 
present case, the imposed normal velocity takes the form: 

w(x,y) = ~ - y + i u [ z , ( y ) - x , ~ + i u / ~ [ x ( l - y ~ + y x ~ ( ~  +y2)i] 

where the coefficients y and /3 are given by 

y =  1+iO[+~~-x,], /3= Y ' [ ~ Q + ~ ]  
l+y2 
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0 0.2 0.4 0.6 0.8 1.0 

(x-c,cv))lccv) 

FIQURE 7 .  Chordwise pressure distribution on a parabolic fin in fluttering oscillation : symbols, 
the panel method ; . . . . . . , the 2D approximation; -, the present method. 

8 is the feathering parameter ; it is set to 0.6 in the present case. Parameters x, and 
xb are set to -0.2 and 0.5. 

On a large part of the wing the agreement of the present theory with the panel 
method is good. Some discrepancy, however, arises in the vicinity of the wing tip. It 
seems that this discrepancy might come from difficulties that Cheng & Murillo noted 
in prescribing the flow tangency boundary condition for the Albano-Rodden code. 
Note that (84) is an asymptotic expansion, up to o(l /A),  of the original condition 
which was expressed in curvilinear coordinates. 

8. Conclusions 
A unified asymptotic theory for wings of large aspect ratio in unsteady conditions 

has been presented. It has been shown that an asymptotic expansion which is 
uniformly valid on the entire range of frequency can be found if one does not try to 
isolate logarithmic contributions. As a result, the solution is expanded with respect 
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to the sequence {l/Aj} instead of the sequence {logi (A) /A j } .  The solution thus found 
has been shown to reproduce the results of other authors in the respective domains 
of validity of their theories. 

The present solution is recurrent in the sense that higher approximation orders can 
be calculated with respect to previous orders through explicit recurrent formulae. As 
an illustration of the recurrence character of the theory, Sellier (1990) gave the 
second-order corrections for the unswept wing. Recurrence is a feature of regular 
perturbation problems. Even though the present problem is a singular perturbation 
problem as discovered by Van Dyke (1964), the singular character of the 
perturbation, 1/A, appeared only once in the course of the demonstration of the 
general formula which has been used to carry out the asymptotic expansion of I ( € )  
in (17) (see Appendix A of Guermond 1990 for details of this formula). 

It is likely that the present approach may be suitable for solving a larger class of 
integral equations for which a small parameter can be identified. 

The authors wish to express their sincere thanks to Professor J. P. Guiraud for his 
kind encouragement. B. King is also thanked for his judicious comments and the 
help he provided during the preparation of the manuscript. The authors are grateful 
for comments and suggestions by the referees that led to improvements in the 
manuscript. This work has been supported by the French Navy. 

Appendix 
In this appendix, the asymptotic arrangement of I ( € )  + J ( E )  is studied in the high- 

and very-high-frequency domains. Starting from (17) and (22), the following result 
is obtained: 

I (€)+ J ( s )  = I0 -+Il E log 181 +I,-ive-'"FP 1, e'""I(v) dv. (A 1 )  

This equality may be put into the alternative form: 

l, dv] 

+I,loglal+I,-ive-i"FP eivV I(v)-- dv. (A 2) L [ 51 
The term proportional to I ,  is uniformly of order 1/A. It is the leading term, the two- 
dimensional contribution. Let R(E)  be the remaining term. It may be rewritten 

R(s)  = I,logJ~I+I,-iive-'"~FP 

- ivI, e-'"FP 1, eiu" log 1v1 dv, (A 3) 

where the finite-part integral has been regularized in the vicinity of E so that the 
integrand behaves like I, when v is small. The I ,  log [el term disappears when the 
second integral is integrated by parts with respect to v :  

R ( E )  = I,-ive-'"FP dv+I,e-i"FP 1 
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At this point, it is easy to verify that if the frequency is high or very high (k = O(l ) ,  
or k 9 1) the first integral is equal to I,e'"/iv plus terms o(1). As a result, in the high- 
frequency domain, R(s) takes the form 

R(E)  = I,e-'"EFP -ddv+o(l). Jlmer 
The leading term is easily seen to be a t  most of order one in the high-frequency 
domain when s is replaced by its value and v is changed by r / A .  In the very high- 
frequency domain R(s) becomes negligible whatever the geometry of the wing. 
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